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The matrices of electrostatic and spiorbit Hamiltonians for the system of % atom interacting with a

closed shell diatomic molecule in uncoupled, coupled, and complex-valued representations for electronic
diabatic basis functions are rederived, and the unitary transformations connecting them are given explicitly.
The links to previous derivations are established and existing inconsistencies are identified and eliminated. It
is proven that the block-diagonalization of ax66 matrix of the electronic Hamiltonian is a result of using

the basis functions with well-defined properties with respect to time reversal. Consideration of time-reversal
symmetry also enforces phase consistency relevant for applications to multisurface reactive scattering and
photodetachment spectroscopy calculations, as well as for perspective studies of inelastic effects in cold and
ultracold environments. These and further developments are briefly sketched.

I. Introduction However, to the best of our knowledge, the only previous
Manv dvnamical processes under focus of modern chemical study that deals with time-reversal symmetry aspects on this
yay P system is that by Alexander et ®l.These authors reported

physics are governed by interactions of open-shell species.™. - . . o
Typical examples include chemical reactions of excited halogen ywthout derivation the expressions for the electronic Hamiltonian

) in the time-reversal-adapted Hund’s case (a) basis.
and oxygen atoms with +moleculé, photodetachment spec- Similarly, the diabatic coupling matrix elements used in that
troscopy of weakly bound aniohand electronic to rotational d sub Y, t ref &ggﬁ) 9 derived b loiting th
energy transfer at ultracold temperatute8ecause these an s,u sequent reteren _are derived by exploiting the
processes usually involve several coupled potential enerngunds case (a) representation for electronic basis functions,

surfaces, it is convenient to formulate the dynamical problem \ghilr?—holrsé)i?ibr:ifr:i%i/ot:?s t\i\?:;kczglrﬁe;g dst)/cftec:?;n![?a& hr:icsllttrz?
in diabatic representation allowing the electronic Hamiltonian P P P

11,12 i imi ’
to have off-diagonal matrix elements. Therefore, the choice of py. In the opposite limit of heavy X atoms, the Hund’s case

the appropriate basis set of diabatic electronic functions and (c) coupling _scheme offgrs more advantatj'é@_, and_ itis
definite phase conventions is of prime importance. For dynami- therefore desirable to obtain an analogue of the diabatic coupling

ix14,15 ’ i
cal applications, it is also desirable to get maximum advantage m?I:[Ir”:()-:A( oallnotp tehiI;Iur;d sercg Sﬁ\éﬁifﬁgrgfg T(;at::ci)gt we provide
of using various symmetries of the Hamiltonian, in particular, a haS(gal-consistentpexp ression for the electfonic Hamil?onian in
the fundamental time-reversal symmetrig reduce the com- P P

plexity of the problem and the number of dynamical equations the basis that exphcnly takes into account the tlme'-reversal
to be solved symmetry. We rigorously prove that this representation leads

; . . 2 to a 2-fold reduction of the dimensionality of the>6 6 real
As an illustrative example, we consider the *RI-Y, coupling matrix of refs 14 and 15. Second, we derive useful
interaction, where X is an atom (e.g., a ground-state halogen ping . S C .
. . . . expressions for the coupling matrices in Hund'’s case (c) basis
or an excited alkali) and the Ymolecule is assumed to be in . . h . .
Tt . . with and without consideration of time-reversal symmetry.
the "X; ground electronic state (a prototype being).HThe

th f this simpl ; h ttracted h Finally, unitary transformations connecting all the representa-
theory of this simple system has atlracted many researchers; ¢ introduced here are derived. Along these lines, we establish
including some of us (see for example refs 5 and 6 and

f therei d is attracting further attention in vi ¢ the links to some previous derivations, using alternative nota-
reterences erein) and is attrac Ing further atiention In VIEW ol ;4 for electronic and spinorbit matrix elements, and correct
interest in cold and ultracold collisioisMost work only T : ;

- ) ) : ._,some existing inconsistencies.
considered the adiabatic dynamics on the ground potential

o . The paper is organized as follows. In section Il, we show
energy surface, but it is of great interest to assess the role thow to construct time-reversal symmetry adapted electronic
open shell effects: the relevant references are reft58

basis sets in the uncoupled and coupled representations of
 Part of the special issue “John C. Light Festschrift". angular momenta. Relationships among them are also given

* Author for correspondence. E-mail: vincenzoaguilanti@yahoo.it, €Xplicitly. A brief discussion on the possible implications of
aquila@impact.dyn.unipg.it. the results is given in section IIl.
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IIl. Theory ‘0_1D ’11D ‘_11D
In this section, we derive the expressions for electrostatic and 2 2 2
spin—orbit Hamiltonians for the system ofR atom interacting
with a closed shell diatomic molecule in uncoupled, coupled, 0 \/évzl — \/§V21

and complex-valued representations for electronic diabatic basis Q=-— 1

functions. We also provide the unitary transformations con- 5 1
necting various representations and compare them with the - \/§V21 0 0 ‘—l — —D
previously published results.

A. Uncoupled Representation.We begin with a fully
uncoupled representatiofLASS[E415 where L and S are ‘/§V21 0 0
electronic orbital and spin angular momenta of the atom X with
the projections along the body-fixed Jacdbdiaxis A and Z, o .
respectively. Although the theory would apply for angandS If o = = —26/3, the matrixP is reduced to the form given
quantum numbers, for the ) example considered here= in ref 15. However, eq 8 in that paper contains mispritsong
1 andS = Y, and the simplified notatiohA=Cwill be used in signs in front of the spifrorbit matrix elements between the
the following. Using the spherical harmonic expansions of the 10 /20 |1 —*/>0and|1 /L] |1 —*;[basis functions.
intermolecular potentidf1215the matrix of the electrostatic As a consequence of the time-reversal symmetfythe
Hamiltonian can be expressed through the coefficigptsvhich adiabatic potentials, which are the eigenvalues of the electronic
describe the electrostatic part of the intermolecular interaction Hamiltonian in eq 3, come in degenerate pairs (Kramer's
including long-range contributions (such as dispersion and doublets). Exploiting this symmetry, it is possible to bring the
induction). The reader is referred to refs 15, 22, and 23 for 6 x 6 real matrix (3) into a block-diagonal form by a complex-
exp|icit expressions in case of aterdiatom Systems such as valued Unitary transformation, whose epriCit form is as follows
F(P) + H, and CI@P) + H, and molecular dimers such as

Ox(°Z7)—0(°2"). 1l il
The phenomenological spitorbit Hamiltonian can be written U= _(I il ) (6)
in the form V2 :
Ao =al gz +5 LS +L S 1) wherel is a 3 x 3 unit matrix.
SO z 2 It is generated by the following transformation of thes0
basis:

where the matrix elementsandp couple thg AZstates with
A=A andA’' = A £ 1, respectively*2426 |n the asymptotic

R — oo limit, o = 8 and eq 1 reduces 3b 1 1_" _1[] i( 1 ‘ _l[]
B and eq ﬁ(‘ozﬂ il0—3 o5[}rijo-3

Hso=a LS @)

i(’—l—lﬂ—illlg i( —1—1D+i‘11[]
with oo — £26/3, whered > 0 is the fine structure splitting of V2 2 2 V2 2 2
the 2P atomic term. The matrix elemeatcan take positive or
negative values, being for example positive for excited alkali i(’]_ — ED_ i‘—l 1[] i( 1— 1D+ i’_llu
atoms and negative for ground-state halogen atoms. Note that V2 2 2 2 2
in ref 14 the spir-orbit Hamiltonian of the form (1) is defined
with the constant®\ = —a/2 andB = —f/2, which have the
opposite signs. In contrast, the authors of ref 15 used a simplified
spin—orbit Hamiltonian (2).

The full electronic Hamiltonian, as the sum of electrostatic
and spin-orbit parts, is given bl

Note that the relationship between the left-hand side set and
the right-hand one is not just a simple complex conjugation.
Indeed, these linear combinations are time-reversal adapted basis
functions, each function being the combination of a primitive
function with its time-reversal partner. This can be verified by

making use of the following relationsHip
_[P —Q
W,z = QP 3)
A VAR A
where the 3x 3 submatrice andQ have the form PIAZE= (571 = A =20 (7)
T: where If’t is the time-reversal operator. The transformation
1 .1 1 involves interpreting botth and= (as well as their surl, see
0 1 1 . ° o .
2 2 2 below) as signless quantities (heliciti€d. Performing the
2\/ 1 similarity transformation using eq 6, we arrive at thex66
Voo T 5Va0 0 BIN2 ’05 block-diagonal matrix
0 VOO—%V20+OJ2 _£6V22 ’_1_1ﬂ i
AT T A T i - *
BINZ - ?ev22 Voo — %vzo— w2 ’1 _ %D 0 P-iQ)~lo v

(4) consisting of two complex conjugated>3 3 blocksV zs.1°



5460 J. Phys. Chem. A, Vol. 110, No. 16, 2006 Grinev et al.

A different phase convention appears to have been applied by Alexandef*ét ial therefore interesting to rewrite the matrix
Vs in the notation of ref 14. Making use of the linking relationships

V3
Vs = Vo + évzo V= ?Vm
V6
Vi = Voo — %Vzo V,= _?sz
__« __B
A= > B 5 9)

and permuting the second and third rows and the second and third columns, one arrives at

Vs —iV, — V2B iVy
iV, —v2B Vp+A V, (10)
—iV, v, Vy— A

Comparison with the matrices indicated by the lettein eq 29 of ref 14 and its complex conjugate reveals that the latter are
connected to (9) by a simple unitary basis set transformation using diagonal matrices of the typeddiag{},

An advantage of using eq 8 is that at long range, where only the-spiit coupling survives, the imaginary off-diagonal factors
disappeat®

B. Coupled RepresentationNow we pass to the coupled representation for the electronic wave fun¢li@swhere the total
electronic angular momentuthis the vectorial sum of and S Both representations are connected by the standard orthogonal
transformation between Hund’s cases (a) and (c) in terms of Clef§saildan vector coupling coefficientg;32

1IQ0= gm/\szugtmm (11)

where the values o\ andX in the sum cannot be chosen independently, béng A + =. The matrixW, see eq 3, in theJQO
basis set can thus be expressed as

C,0\(P —Q\(C. 0
_ T u u Y
0 = CWasC _(0 CI)(Q P )(0 CI) (12)
where the upper and lower blocks of tematrix are as follows
[|-v30 e V3o -6
C,=3|0 30 C,=§O 30 (13)
V6 03 V6 0 V3

and the tilde indicates transposition. Making the indicated 3 matrix multiplications, we get the matri¥/ ;o in the coupled basis
and the notations of ref 14:

33 -2 11 By -1
22 272
(v + 2V, + 2A + 4B) f _%E(VE_VH+B_A)O \/?_3\/1 v,
%6\/2 V“ —A %’})Vz %3V1 0 “/?évl
_ %Z(vz —Vy+B-A) %évz Vs Vg A= aB) -V, _ \/??5\/1 0
0 ?Vl -V, (Vs + 2V, + 2+ 4B) — %6\/2 %E(Vz v +B-A)
%_3V1 0 - %E)Vl - ?vz Vi — A ?Vz
v, Y6, o %Z(vz —Vy+B—A) §3v2 VsV + A 48)

(14)

It is interesting to note that the matrix representation (14) of the-gmibit interaction is no longer diagonal when the two constants
A andB aredifferent This is an expected result because the Cleb&trdan transformation diagonalizes the operator given by eq
2, which becomes equal to that of eq 1 only asymptotically (see section IIA). Because the off-diagoralisipicouplings in eq
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14 are proportional to the differences of the kilvd- B, we expect their magnitude to be greatly reduced with respect to electrostatic
and diagonal spirorbit matrix elements.
Asymptotically, whenB = A = 6/3, we have

Voo + 20 — 2V, - %_2\,20 0 v, _ % 3.,
EVREVENE A T
Wl 2y, 2, Voo + D= 30— L, — Y, 0 .
o eVan - “/g’vﬂ Voo + 20 2V, %2\,20 (19
%’Vﬂ 0 - %_2\/21 %vzz Voo — %vzo - %a - %_2\/22
Sy, Vo 0 Py v, Vet

where the notations of ref 15 are used. Up to the shift of energy origd/®wand the definitioll = —26/3, this matrix is identical
to that derived by Schatz and co-workéts.
The representation (15) has the advantage over the uncouptdbne (3) of diagonalizing the spirorbit operator. As a Hund’s
(c) case, the new expressions for Mg matrix should be useful for the description of collision systems exhibiting a pronounced
spin—orbit coupling, compared with the electronic interaction anisotropy.
An interesting question is whether a transformation can be constructed that brings theWihatiinto the block-diagonal form
with two complex conjugated blocks
_ \%
W, = 2, 2/ = ( w0 ) (16)
0 Vi

Exploiting the time-reversal symmetry, we succeeded in showing that the required m¥agsigcuting such a transformation is

w= %2(: L—/u) (17)

where.7is a 3 x 3 diagonal matrix diag(1;-1, —1).
The corresponding basis set

Ll Ly s
SH\22HT 22 SH\22Y 272

T R Y
L2 2d 22 B2 222

1(31_.3 1[] 1(31+.3 1

2240 2 2

V2

obeys time-reversal symmetry as above. One can check it explicitly by making use of the following relatfdioshie action of
the time-reversal operat@ on the basis functions of the coupled representation:

22072 2

PIQC= —i(—) 20— QO (18)

Taking into account that this operator is antilinear and antisymmetric, it is easy to prove that the functions on the right-hand side
are the time-reversal partners of those on the left-hand?$ide.
It can be verified by a straightforward calculation that the complex 3 blocksV ;o (16) of theW ;o matrix in eq 14 are given

by

1
§(Vz+2VH+2A+4B) ?Vz —%Z(VZ—VH-FB—A) 0 —glVl
_|v6 _ {3 6
V= { v, Vg — A —?Vz +i —ng 0 - —{vl (19)
2 1 _ 6
__“é_(vz—vHJrB—A) —*fvz 3@Vs + Vy +A—4B) A {Vl 0
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For theW ;o matrix represented by eq 15, thex33 block - u W
acquires particularly simple form due to the asymptotic ap- e e
proximation to the spifrorbit coupling (2):
Vie = C C
1 0 2V \/Evzo 20 O
Vod —5|2V22 Voo Vav,, +3910 -1 0 |+ W, T W
— 00 -1
ﬁVZO ﬁvﬂ Vao Figure 1. Schematic illustration of the relationships among the diabatic
matrices for the electrostatic-plus-spiarbit Hamiltonians in the
10 Vo, - «/§V21 uncoupled |AZ0) and coupled|(Q0) representations without (left) and
1 with (right) implementation of the time-reversal symmetry. The four
VZl 0 ﬁv?l (20) unitary transformation$, C, #/andC act according to egs 8, 12, 16
\/§V21 — \/zV21 0 and 21, respectively.

The expression (20) coincides with that given in eq 13 of ref valued representations of the reduced dimensionality. Unitary
15 (in the latter the numerical facton/3/5 multiplying Vs, transformations with a consistent phase convention between all
should be 2x 3/5). Equations 1419 provide the new  the representations have been presented. The links to and among
expressions for diabatic couplings between the states of definitethe previously derived formulas were established and some
total electronic angular momentudnand its projectior . inaccuracies were identified and corrected.

Comparing the matriced and %/, we see that the transforma- Implementation of the time-reversal symmetry provides a
tion (17) between the real Hund'’s case (c) functions and their general recipe for reducing the dimensionality of multisurface
time-reversal counterparts is very different from that given by quantum problem. As far as numerical applications are con-
eq 6 for the Hund’s case (a). This is related to the structure of cerned, a conservative estimate of the efficiency gained could
the Clebsch-Gordan matrix in eq 13: the block, is a be obtained as follows. IN is the number of channels to be
symmetric matrix whereas ti@ is not. There seems to be some included in the dynamical treatment, the multiplication or
confusion on this point? which is eliminated in the present inversion of a reaN x N matrix (3) will requireN3 operations.
paper. If the complex 3x 3 representation (8) is used instead, we get

C. Relationships among the Diabatic Representations.  (N/2)> = N%8 operations on complex numbers. Because
Coupled and uncoupled representations are related by the matrixnultiplication of two complex numbers involves 4 times the
C; see eq 12. When the time-reversal symmetry is implemented, number of operations associated with multiplication of two real
the link between the two basis sets is given by an orthogonal numbers, the calculations in the complex 3 basis are 2 times

matrix C, which connectdV s andWq more efficient. Moreover, it should be noted that3 3
L _ representations obtained here lead to real matrices iRthe
CW,;C'=w, (21) oo limit where theVy (or V21) matrix element vanishes. In this

case, a 8-fold reduction of the computational effort is predicted,
Inserting eq 8 in the left-hand side and egs 16 in the right-hand which may be advantageous for carrying out long-range

side of eq 21, we can prove that propagation. Complex-valued representations could be also
_ , convenient for adiabatic applications when the proper symmetry-
Cu=uC (22) adapted eigenvectors are required.

The case of 8P atom must be considered as the most known
example. Extensions to open-shell atoms with arbitrary spin and
electronic angular momentum require only minor modifications
I 0 along a well-established line of appro&éi2-2%-3iwhich exploits
0 A (23) a formal analogy between the interactions of an open-shell atom

and that of a rigid rotor. In this sense, the avenues of
From eq 22, exploiting this latter relation, we finally obtain  developments of the present work bear analogies with recent
progress on the electronic interaction anisotropy between two

o (0 Cu) (24) open-shell atom&' The angular momentum algebra machinery

C, 0 would be very similar, provided the molecular anisotropy

interaction is expanded in Legendre polynomials. The main

whereC, is given in eq 13. The relationships among the diabatic djfference lies of course in the dimensionality of the interaction

representations introduced above are schematically illustratedpotential terms, which in the atoratom case only depend on

The matrix 7, see eq 17, is closely connected with the matrix
U, see eq 6:

= U(

in Figure 1. R In general, the fivey), terms can be made to depend on the
) . . three variables chosen to describe the atoliatom as a three-
IIl. Discussion and Perspectives body problent® although a hierarchy of simplifications can be

In this paper, we have presented detailed and rigorous analysiseffective, for example, when the molecule is approximated as
of the diabatic coupling matrices describing the interaction @ rigid rotor (vibrations neglected), or when its rotational
between an open-shell atom and a closed-shell diatomic anisotropy is averaged out.
molecule. Using a well-studied example of?R atom, we Moreover, this paper only dealt with matrix representations
obtained explicit expressions for the diabatic matrices of the of the electronic interaction and can be considered as a starting
electronic Hamiltonian in coupled and uncoupled angular point for the treatment of the full dynamics. Such a treatment
momentum representations. For both schemes, the time-reversalequires the introduction into the Hamiltonian of additional
symmetrization has been implemented to construct the complex-operators: the orbital angular momentum of the relative atom
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diatom motion and the rotational angular momentum of the
e Gimenez, X.; Lucas, J. MPhys. Chem. Chem. Phy&002 4, 401.

diatom itself. Interesting future work would be to explor

alternative coupling schemes for all angular momenta that are

J. Phys. Chem. A, Vol. 110, No. 16, 2006463
(9) Aquilanti, V.; Cavalli S.; De Fazio, D.; Volpi, A.; Aguilar, A.;

(10) Rebentrost, F.; Lester, W. A., Ir. Chem. Physl975 63, 3737.
(11) Dubernet, M.-L.; Hutson, J. Ml. Phys. Chem1994 98, 5844.

appropriate for a given system. This may also serve as a guide (12) Dubernet, M.-L.; Hutson, J. MI. Chem. Phys1994 101, 1939.

for the development of decoupling approximations to describe
the dynamics of inelastic events, keeping in the formulation the

(13) Schatz, G. C.; McCabe, P.; Connor, J. NFaraday Discuss1998
110, 139.
(14) Alexander, M. H.; Manolopoulos, D. E.; Werner, H.3J.Chem.

operators and couplings adapted to a given system for specificppys 200q 113 11084.

ranges of collision energies, total angular momenta and-atom

diatom distances.

The cases to which this theory can be applied offer an ample
phenomenology: the ultracold conditions appear particularly

(15) Aquilanti, V.; Cavalli, S.; Pirani, F.; Volpi, A.; Cappelletti, 3.
Phys. Chem. 2001 105 2401.

(16) Kios, J.; Chatasski, G.; Szczéniak, M. M. Int. J. Quantum Chem.
2002 90, 1038.

(17) Klos, J.; Chatasski, G.; Szczéniak, M. M. J. Chem. Phy2002

suited for drastic approximations for both vibrations and 117 4709.

rotations. We hope that this study helps to indicate how to
classify such a phenomenology as long as information on the

(18) Ghosal, S.; Mahapatra, $. Phys. Chem. 2005 109, 1530.
(19) Ghosal, S.; Mahapatra, $. Chem. Phys2004 121, 5740.
(20) Manolopoulos, D. E.; Alexander, M. iPhys. Chem. Chem. Phys.

Vi radial potential terms is accumulated from experimental, ab 2004 6, 4984.

initio and semiempirical sources on systems of specific interest.
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