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The matrices of electrostatic and spin-orbit Hamiltonians for the system of a2P atom interacting with a
closed shell diatomic molecule in uncoupled, coupled, and complex-valued representations for electronic
diabatic basis functions are rederived, and the unitary transformations connecting them are given explicitly.
The links to previous derivations are established and existing inconsistencies are identified and eliminated. It
is proven that the block-diagonalization of a 6× 6 matrix of the electronic Hamiltonian is a result of using
the basis functions with well-defined properties with respect to time reversal. Consideration of time-reversal
symmetry also enforces phase consistency relevant for applications to multisurface reactive scattering and
photodetachment spectroscopy calculations, as well as for perspective studies of inelastic effects in cold and
ultracold environments. These and further developments are briefly sketched.

I. Introduction

Many dynamical processes under focus of modern chemical
physics are governed by interactions of open-shell species.
Typical examples include chemical reactions of excited halogen
and oxygen atoms with H2 molecule,1 photodetachment spec-
troscopy of weakly bound anions2 and electronic to rotational
energy transfer at ultracold temperatures.3 Because these
processes usually involve several coupled potential energy
surfaces, it is convenient to formulate the dynamical problem
in diabatic representation allowing the electronic Hamiltonian
to have off-diagonal matrix elements. Therefore, the choice of
the appropriate basis set of diabatic electronic functions and
definite phase conventions is of prime importance. For dynami-
cal applications, it is also desirable to get maximum advantage
of using various symmetries of the Hamiltonian, in particular,
the fundamental time-reversal symmetry,4 to reduce the com-
plexity of the problem and the number of dynamical equations
to be solved.

As an illustrative example, we consider the X(2P)-Y2

interaction, where X is an atom (e.g., a ground-state halogen
or an excited alkali) and the Y2 molecule is assumed to be in
the 1Σg

+ ground electronic state (a prototype being H2). The
theory of this simple system has attracted many researchers
including some of us (see for example refs 5 and 6 and
references therein) and is attracting further attention in view of
interest in cold and ultracold collisions.7 Most work only
considered the adiabatic dynamics on the ground potential
energy surface, but it is of great interest to assess the role of
open shell effects: the relevant references are refs 8-15.

However, to the best of our knowledge, the only previous
study that deals with time-reversal symmetry aspects on this
system is that by Alexander et al.14 These authors reported
without derivation the expressions for the electronic Hamiltonian
in the time-reversal-adapted Hund’s case (a) basis.

Similarly, the diabatic coupling matrix elements used in that
and subsequent references16-21 are derived by exploiting the
Hund’s case (a) representation for electronic basis functions,
which is obviously the best choice for systems in which the
spin-orbit interaction is weak compared to potential anisotro-
py.11,12In the opposite limit of heavy X atoms, the Hund’s case
(c) coupling scheme offers more advantages,11,12 and it is
therefore desirable to obtain an analogue of the diabatic coupling
matrix14,15 in the Hund’s case (c) representation.

The goal of this paper is therefore 3-fold. First, we provide
a phase-consistent expression for the electronic Hamiltonian in
the basis that explicitly takes into account the time-reversal
symmetry. We rigorously prove that this representation leads
to a 2-fold reduction of the dimensionality of the 6× 6 real
coupling matrix of refs 14 and 15. Second, we derive useful
expressions for the coupling matrices in Hund’s case (c) basis
with and without consideration of time-reversal symmetry.
Finally, unitary transformations connecting all the representa-
tions introduced here are derived. Along these lines, we establish
the links to some previous derivations, using alternative nota-
tions for electronic and spin-orbit matrix elements, and correct
some existing inconsistencies.

The paper is organized as follows. In section II, we show
how to construct time-reversal symmetry adapted electronic
basis sets in the uncoupled and coupled representations of
angular momenta. Relationships among them are also given
explicitly. A brief discussion on the possible implications of
the results is given in section III.
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II. Theory

In this section, we derive the expressions for electrostatic and
spin-orbit Hamiltonians for the system of a2P atom interacting
with a closed shell diatomic molecule in uncoupled, coupled,
and complex-valued representations for electronic diabatic basis
functions. We also provide the unitary transformations con-
necting various representations and compare them with the
previously published results.

A. Uncoupled Representation. We begin with a fully
uncoupled representation|LΛSΣ〉,14,15 where L̂ and Ŝ are
electronic orbital and spin angular momenta of the atom X with
the projections along the body-fixed JacobiR axis Λ and Σ,
respectively. Although the theory would apply for anyL andS
quantum numbers, for the X(2P) example considered hereL )
1 andS ) 1/2 and the simplified notation|ΛΣ〉 will be used in
the following. Using the spherical harmonic expansions of the
intermolecular potential,11,12,15 the matrix of the electrostatic
Hamiltonian can be expressed through the coefficientsVlµ, which
describe the electrostatic part of the intermolecular interaction
including long-range contributions (such as dispersion and
induction). The reader is referred to refs 15, 22, and 23 for
explicit expressions in case of atom-diatom systems such as
F(2P) + H2 and Cl(2P) + H2 and molecular dimers such as
O2(3Σ-)-O2(3Σ-).

The phenomenological spin-orbit Hamiltonian can be written
in the form

where the matrix elementsR andâ couple the|ΛΣ〉 states with
Λ′ ) Λ andΛ′ ) Λ ( 1, respectively.14,24-26 In the asymptotic
R f ∞ limit, R ) â and eq 1 reduces to27

with R f (2δ/3, whereδ > 0 is the fine structure splitting of
the 2P atomic term. The matrix elementR can take positive or
negative values, being for example positive for excited alkali
atoms and negative for ground-state halogen atoms. Note that
in ref 14 the spin-orbit Hamiltonian of the form (1) is defined
with the constantsA ) -R/2 andB ) -â/2, which have the
opposite signs. In contrast, the authors of ref 15 used a simplified
spin-orbit Hamiltonian (2).

The full electronic Hamiltonian, as the sum of electrostatic
and spin-orbit parts, is given by15

where the 3× 3 submatricesP andQ have the form

If R ) â ) -2δ/3, the matrixP is reduced to the form given
in ref 15. However, eq 8 in that paper contains misprintsswrong
signs in front of the spin-orbit matrix elements between the
|0 1/2〉, |1 -1/2〉 and |1 -1/2〉, |1 -1/2〉 basis functions.

As a consequence of the time-reversal symmetry,4,28 the
adiabatic potentials, which are the eigenvalues of the electronic
Hamiltonian in eq 3, come in degenerate pairs (Kramer’s
doublets). Exploiting this symmetry, it is possible to bring the
6 × 6 real matrix (3) into a block-diagonal form by a complex-
valued unitary transformation, whose explicit form is as follows

whereI is a 3× 3 unit matrix.
It is generated by the following transformation of the|ΛΣ〉

basis:

Note that the relationship between the left-hand side set and
the right-hand one is not just a simple complex conjugation.
Indeed, these linear combinations are time-reversal adapted basis
functions, each function being the combination of a primitive
function with its time-reversal partner. This can be verified by
making use of the following relationship4

where P̂t is the time-reversal operator. The transformation
involves interpreting bothΛ andΣ (as well as their sumΩ, see
below) as signless quantities (helicities4,29). Performing the
similarity transformation using eq 6, we arrive at the 6× 6
block-diagonal matrix

consisting of two complex conjugated 3× 3 blocksVΛΣ.15

ĤSO ) R L̂z Ŝz + â
L̂+ Ŝ- + L̂- Ŝ+

2
(1)

ĤSO ) R L̂‚Ŝ (2)

WΛΣ ) (P -Q
Q P ) (3)
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A different phase convention appears to have been applied by Alexander et al.14 It is therefore interesting to rewrite the matrix
VΛΣ in the notation of ref 14. Making use of the linking relationships

and permuting the second and third rows and the second and third columns, one arrives at

Comparison with the matrices indicated by the letterH in eq 29 of ref 14 and its complex conjugate reveals that the latter are
connected to (9) by a simple unitary basis set transformation using diagonal matrices of the type diag(1,(i, (i).

An advantage of using eq 8 is that at long range, where only the spin-orbit coupling survives, the imaginary off-diagonal factors
disappear.15

B. Coupled Representation.Now we pass to the coupled representation for the electronic wave functions|JΩ〉, where the total
electronic angular momentumĴ is the vectorial sum ofL̂ and Ŝ. Both representations are connected by the standard orthogonal
transformation between Hund’s cases (a) and (c) in terms of Clebsch-Gordan vector coupling coefficients:30-32

where the values ofΛ andΣ in the sum cannot be chosen independently, beingΩ ) Λ + Σ. The matrixW, see eq 3, in the|JΩ〉
basis set can thus be expressed as

where the upper and lower blocks of theC matrix are as follows

and the tilde indicates transposition. Making the indicated 3× 3 matrix multiplications, we get the matrixWJΩ in the coupled basis
and the notations of ref 14:

It is interesting to note that the matrix representation (14) of the spin-orbit interaction is no longer diagonal when the two constants
A andB aredifferent. This is an expected result because the Clebsch-Gordan transformation diagonalizes the operator given by eq
2, which becomes equal to that of eq 1 only asymptotically (see section IIA). Because the off-diagonal spin-orbit couplings in eq
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14 are proportional to the differences of the kindA - B, we expect their magnitude to be greatly reduced with respect to electrostatic
and diagonal spin-orbit matrix elements.

Asymptotically, whenB ) A ) δ/3, we have

where the notations of ref 15 are used. Up to the shift of energy origin byδ/3 and the definitionλ ) -2δ/3, this matrix is identical
to that derived by Schatz and co-workers.13

The representation (15) has the advantage over the uncoupled|ΛΣ〉 one (3) of diagonalizing the spin-orbit operator. As a Hund’s
(c) case, the new expressions for theWJΩ matrix should be useful for the description of collision systems exhibiting a pronounced
spin-orbit coupling, compared with the electronic interaction anisotropy.

An interesting question is whether a transformation can be constructed that brings the matrixWJΩ into the block-diagonal form
with two complex conjugated blocks

Exploiting the time-reversal symmetry, we succeeded in showing that the required matrixU executing such a transformation is

whereI is a 3× 3 diagonal matrix diag(1,-1, -1).
The corresponding basis set

obeys time-reversal symmetry as above. One can check it explicitly by making use of the following relationship33 for the action of
the time-reversal operatorP̂t on the basis functions of the coupled representation:

Taking into account that this operator is antilinear and antisymmetric, it is easy to prove that the functions on the right-hand side
are the time-reversal partners of those on the left-hand side.24,25

It can be verified by a straightforward calculation that the complex 3× 3 blocksVJΩ (16) of theWJΩ matrix in eq 14 are given
by

WJΩ ) (V00 + 2
3
δ - 2

5
V22 -

x2
5

V20
0

1
5
V21 -

x3
5

V21

- 2
5
V22 V00 - 1

5
V20 - 1

3
δ -

x2
5

V22

1
5
V21 0 x2

5
V21

-
x2
5

V20 -
x2
5

V22
V00 + 1

5
V20 - 1

3
δ -

x3
5

V21 -
x2
5

V21
0

0
1
5
V21 -

x3
5

V21
V00 + 2

3
δ 2

5
V22

x2
5

V20

1
5
V21 0 -

x2
5

V21

2
5
V22 V00 - 1

5
V20 - 1

3
δ -

x2
5

V22

-
x3
5

V21
x2
5

V21
0 x2

5
V20 -

x2
5

V22
V00 + 1

5
V20 - 1

3
δ

) (15)

Wh JΩ ) UWJΩU† ) (VJΩ 0
0 VJΩ

* ) (16)

U ) 1

x2
(I iI
I -iI ) (17)

1

x2
(|12 1

2〉 + i|12 - 1
2〉) 1

x2
(|12 1

2〉 - i|12 - 1
2〉)

1

x2
(|32 - 3

2〉 - i|32 3
2〉) 1

x2
(|32 - 3

2〉 + i|32 3
2〉)

1

x2
(|32 1

2〉 - i|32 - 1
2〉) 1

x2
(|32 1

2〉 + i|32 - 1
2〉)

P̂t|JΩ〉 ) -i(-)J-Ω|J - Ω〉 (18)

VJΩ ) (13(VΣ + 2VΠ + 2A + 4B) x6
3

V2 -
x2
3

(VΣ - VΠ + B - A)

x6
3

V2
VΠ - A x3

3
V2

-
x2
3

(VΣ - VΠ + B - A)
x3
3

V2

1
3
(2VΣ + VΠ + A - 4B)

) + i(0 -
x3
3

V1
V1

x3
3

V1
0 -

x6
3

V1

-V1
x6
3

V1
0

) (19)

2P Interactions with Closed-Shell Diatomic Molecules J. Phys. Chem. A, Vol. 110, No. 16, 20065461



For theWJΩ matrix represented by eq 15, the 3× 3 block
acquires particularly simple form due to the asymptotic ap-
proximation to the spin-orbit coupling (2):

The expression (20) coincides with that given in eq 13 of ref
15 (in the latter the numerical factor 2x3/5 multiplying V22

should be 2× 3/5). Equations 14-19 provide the new
expressions for diabatic couplings between the states of definite
total electronic angular momentumJ and its projectionΩ.

Comparing the matricesU andU, we see that the transforma-
tion (17) between the real Hund’s case (c) functions and their
time-reversal counterparts is very different from that given by
eq 6 for the Hund’s case (a). This is related to the structure of
the Clebsch-Gordan matrix in eq 13: the blockCu is a
symmetric matrix whereas theCl is not. There seems to be some
confusion on this point,15 which is eliminated in the present
paper.

C. Relationships among the Diabatic Representations.
Coupled and uncoupled representations are related by the matrix
C; see eq 12. When the time-reversal symmetry is implemented,
the link between the two basis sets is given by an orthogonal
matrix Ch , which connectsWh ΛΣ andWh JΩ

Inserting eq 8 in the left-hand side and eqs 16 in the right-hand
side of eq 21, we can prove that

The matrixU, see eq 17, is closely connected with the matrix
U, see eq 6:

From eq 22, exploiting this latter relation, we finally obtain

whereCu is given in eq 13. The relationships among the diabatic
representations introduced above are schematically illustrated
in Figure 1.

III. Discussion and Perspectives

In this paper, we have presented detailed and rigorous analysis
of the diabatic coupling matrices describing the interaction
between an open-shell atom and a closed-shell diatomic
molecule. Using a well-studied example of a2P atom, we
obtained explicit expressions for the diabatic matrices of the
electronic Hamiltonian in coupled and uncoupled angular
momentum representations. For both schemes, the time-reversal
symmetrization has been implemented to construct the complex-

valued representations of the reduced dimensionality. Unitary
transformations with a consistent phase convention between all
the representations have been presented. The links to and among
the previously derived formulas were established and some
inaccuracies were identified and corrected.

Implementation of the time-reversal symmetry provides a
general recipe for reducing the dimensionality of multisurface
quantum problem. As far as numerical applications are con-
cerned, a conservative estimate of the efficiency gained could
be obtained as follows. IfN is the number of channels to be
included in the dynamical treatment, the multiplication or
inversion of a realN × N matrix (3) will requireN3 operations.
If the complex 3× 3 representation (8) is used instead, we get
(N/2)3 ) N3/8 operations on complex numbers. Because
multiplication of two complex numbers involves 4 times the
number of operations associated with multiplication of two real
numbers, the calculations in the complex 3× 3 basis are 2 times
more efficient. Moreover, it should be noted that 3× 3
representations obtained here lead to real matrices in theR f
∞ limit where theV1 (or V21) matrix element vanishes. In this
case, a 8-fold reduction of the computational effort is predicted,
which may be advantageous for carrying out long-range
propagation. Complex-valued representations could be also
convenient for adiabatic applications when the proper symmetry-
adapted eigenvectors are required.

The case of a2P atom must be considered as the most known
example. Extensions to open-shell atoms with arbitrary spin and
electronic angular momentum require only minor modifications
along a well-established line of approach,22,23,30,31which exploits
a formal analogy between the interactions of an open-shell atom
and that of a rigid rotor. In this sense, the avenues of
developments of the present work bear analogies with recent
progress on the electronic interaction anisotropy between two
open-shell atoms.34 The angular momentum algebra machinery
would be very similar, provided the molecular anisotropy
interaction is expanded in Legendre polynomials. The main
difference lies of course in the dimensionality of the interaction
potential terms, which in the atom-atom case only depend on
R. In general, the fiveVlµ terms can be made to depend on the
three variables chosen to describe the atom-diatom as a three-
body problem,15 although a hierarchy of simplifications can be
effective, for example, when the molecule is approximated as
a rigid rotor (vibrations neglected), or when its rotational
anisotropy is averaged out.

Moreover, this paper only dealt with matrix representations
of the electronic interaction and can be considered as a starting
point for the treatment of the full dynamics. Such a treatment
requires the introduction into the Hamiltonian of additional
operators: the orbital angular momentum of the relative atom-

VJΩ )

V00I - 1
5(0 2V22 x2V20

2V22 V20 x2V22

x2V20 x2V22
-V20

) + 1
3
δ(2 0 0

0 -1 0
0 0 -1) +

i
5(0 V21 - x3V21

-V21 0 x2V21

x3V21 - x2V21 0
) (20)

Ch Wh ΛΣ Ch † ) Wh JΩ (21)

Ch U ) UC (22)

U ) U(I 0
0 I ) (23)

Ch ) (0 Cu

Cu 0 ) (24)

Figure 1. Schematic illustration of the relationships among the diabatic
matrices for the electrostatic-plus-spin-orbit Hamiltonians in the
uncoupled (|ΛΣ〉) and coupled (|JΩ〉) representations without (left) and
with (right) implementation of the time-reversal symmetry. The four
unitary transformationsU, C, U andCh act according to eqs 8, 12, 16
and 21, respectively.
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diatom motion and the rotational angular momentum of the
diatom itself. Interesting future work would be to explore
alternative coupling schemes for all angular momenta that are
appropriate for a given system. This may also serve as a guide
for the development of decoupling approximations to describe
the dynamics of inelastic events, keeping in the formulation the
operators and couplings adapted to a given system for specific
ranges of collision energies, total angular momenta and atom-
diatom distances.

The cases to which this theory can be applied offer an ample
phenomenology: the ultracold conditions appear particularly
suited for drastic approximations for both vibrations and
rotations. We hope that this study helps to indicate how to
classify such a phenomenology as long as information on the
Vlµ radial potential terms is accumulated from experimental, ab
initio and semiempirical sources on systems of specific interest.
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